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SUMMARY

As a Phase | effort of the Small Business Innovative Research (SBIR) Program, this
work tests the feasibility of an approach to solve a problem announced in the SBIR
solicitation of October 1987. This final report for Phase | shows that a concept proposed
by Planning Systems, Incorporated (PSl) to address topic N88-6, the identification of
tactically significant acoustic environments, has demonstrated feasibility and warrants
follow-on funding in Phase Il. PSl's approach is to use neural network technology in
concert with complex empirical orthogonal function (CEOF) decomposition of the Gulf
Stream and a Naval Ocean Research and Development Activity (NORDA) edge detection
procedure, to identify the Gulf Stream in infrared (IR) imagery of the western North Atlantic
Ocean.
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PRELIMINARY NEURAL NETWORK DETECTION OF A GULF STREAM IN
IMAGES OF SEA SURFACE TEMPERATURE GRADIENTS

1.0 INTRODUCTION AND BACKGROUND
1.1 Introduction

The sea surface is teeming with thermal structure detectable by satellite infrared
sensors. Present sensors are capable of 1 km horizontal resolution with 0.5°C accuracy
under cloud-free conditions (Figure 1). Such sensors can detect ocean fronts, sningles,
rings, and eddies -- structures caused by a variety of atmospheric, oceanographic, and
coastal processes. For Naval applications, however, only those with deep reaching (on the
order of 100 m) variation in sound speed are of tactical significance.

The opportunity exists to select from the wide variety of surface thermal structures
those associated with deep reaching sound speed variations. We know that in the Western
Atlantic the Gulf Stream is important tactically as are the rings (cold and warm core) that it
spawns!. The Gulf Stream and its rings contribute to the surface thermal expressions
observed by satellite. Specifically the Gulf Stream is a continuous feature consisting of sea
surface temperature gradients between the longitudes 75°W and 40°W. Images can be
produced in which pixels have been identified that are associated with high horizontal
gradients and thus are candidates for the Gulf Stream edge (Figure 2). The problem
becomes to discard some of these high gradient edges and connect the rest into a
continuous Gulf Stream. A mathematical description of a continuous Gulf Stream with
realistic meanders has been defined using complex empirical orthogonal functions
(CEOFs)2. Ten complex modes give a good description (Figures 3) and serve as a
compact description of the tactically significant features.

The innovative opportunity is to use the new technology of neural networks to
connect the gradients of infrared imagery to the complex modes of a continuous, tactically
significant Gulf Stream. |If applied successfully, then the great speed and quantitative
effectiveness of artificial intelligence technology can be brought to bear on the identification
of tactically significant environments from remotely sensed imagery, making more effective
the U.S. Navy staff assigned to the task in the Fleet.
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Figure 1. Sea Surface Temperature image derived from infrared (IR) satellite imagery.
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Figure 2. Edge image derived from Figure 1 using the Naval Ocean Research and
Development Activity (NORDA) edge detection procedures.
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The emerging capabilities of neural networks to reduce noisy imagery to meaningful
information in a fast, highly parallel fashion presents an opportunity to solve longstanding
problems in satellite data analysis. A neural network implemented in either software or
hardware greatly decreases the need for a human operator to visually examine the
infrared imagery since the network operates directly on the data to produce probable Gulf
Stream points. This computer implementation yields another immediate benefit -- the
processing begins as soon as the satellite data are acquired instead of waiting for a
human expert to analyze the data. The necessity for specialized shore based display
equipment and interactive scftware are also diminished because the network operates on
the digital data directly as it is received from the satellite or automatically processed by
existing edge detection algorithms.

In addition to countering the deficiencies in the present system, a neural network
capable of analyzing infrared imagery opens up new possibilities in tactical use of satellite
data. The capability to analyze satellite imagery without the use of an expert and
extensive workstation introduces the possibility of on-board analysis of data. This enables
properly equipped vessels to make critical decisions based on the latest information in
near real-time without the delays introduced by the present system and its dependence on
shore-based facilities.

1.2 Background

Planning Systems Incorporated (PSl) developed a numerical description of the Gulf
Stream based on complex empirical orthogonal functions (CEOFs) -- the eigenvectors of
an "expectation matrix." The expectation matrix is obtained by averaging a set of matrices
each representing the correlation properties of an individual vector -- in our case a vector
that describes the instantaneous position of the Gulf Stream. This formulation and its
advantages for describing the Gulf Stream are described in detail by Carter3. To
summarize that reference, a looping, contorted, but continuous Gulf Stream can be
described by a vector of complex elements consisting of latitude, longitude pairs. That
vector can be approximated well by a relatively small set of compiex coefficients. Each
coefficient must be multiplied with a corresponding CEOF (a k.a. principal component,
eigenvector, or mode) that is fixed for all time, to produce a set of vectors that when added
together reproduce the original Gulf Stream vector. Speaking geometrically, the CEOFs
constitute a set of basis vectors that span the space of all known Gulf Stream states (i.e.,
locations and shapes); an individual Gulf Stream state (location and shape) is produced
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by linear combinations of the basis set. Speaking figuratively, the CEOFs are the shapes
of Gulf Stream patterns and the coefficients are the orientations and sizes of the patterns.

Neural networks have been emerging as a new, viable technology for image
analysis and pattern recognition. There are several characteristics of neural networks that
make them effective for analyzing large amounts of data rapidly and resistant to noise in
the data. Neural networks are composed of many simple computational units
(corresponding to biological neurons) that work in unison to process information. There is
not programming of the network in the traditional sense; rather the weights that connect the
neurons are "learned" by the network through repeated applications of input data for which
the desired result is known. Thus, a network can be presented with an infrared image or
other input data, and it can process that data based on the information presented during
training. The network is tolerant of noise since it has learned the salient features of an
image during training, and the noise is in some sense averaged out. A number of neural
models for pattern recognition have recently produced promising results and are now
being employed on larger applications. Among the more prominent neural paradigms
used are the Neocognitron4 and Back-Propagation model®.

The Naval Ocean Research and Development Activity (NORDA) Remote Sensing
Branch is already performing research into the interpretation of imagery data and has
developed an edge-detection algorithm to compute the position of sea surface
temperature (SST) gradient fronts in infrared (IR) imagery6. The immediate need is to
identify the Gulif Stream among the fronts. To say it another way, the Gulf Stream is the
pattern to be recognized in a NORDA edge image, and other fronts constitute noise in that
edge image.

The opportunity exists, therefore, to explore the capacity of neural networks to
recognize the Guif Stream pattern (represented by CEOF coefficients) within the noise of a
NORDA SST edge image.




2.0 TECHNICAL APPROACH
2.1 Objectives .

The Phase | work has as its objective to test whether a credible Gulf Stream can be
produced by a neural network that has inputs derived from imagery, and has CEOF
coefficients as outputs.

2.2 Issues

The basic capability at risk during Phase | is whether a neural network can produce
meaningful coefficients for complex empirical orthogonal functions (CEOFs) whose
structures were not available to the network. That is, are tha patterns represented by
coefficients of CEOFs appropriate for neural network technology. This risk resides in
several detailed issues that require testing during Phase |. Wae presume that attributes of
neural networks, i.e. capability to recognize patterns in noisy imagery, will be attained in
Phase Il if we can demonstrate suitability of a CEOF coefficient as a "pattern.”

We must determine the neural network connections and weights among nodes that
produce meaningful values for CEOF coefficients. These properties of the network are
determined by applying one of several candidate learning algorithms operating on an
initially randomly connected network and an extensive training set. This leads to several
issues.

*  What constitutes an appropriate training set for the network?
*  What is the criterion for a meaningful CEOF coefficient?

« What, if any, neural network training procedure is capable of producing
meaningful coefficients for CEOFs from the chosen training set?

* What is an appropriate configuration of nodes and layers to produce meaningful
CEOF coefficients?




+ How sensitive to the configuration of hidden layers and nodes is the production
of meaningful CEOF coefficients?

CEOFs computed by Molinelli and Flanigan2 were expressed as vectors with
elements every ten nautical miles downstream. Operational use would provide latitude
and longitudes of a possible Gulf Stream location derived from SST edge imagery that
could not be associated a prion with distance downstream. This leads to the next issue.

+ Can input nodes representing positions on a latitude-longitude grid produce
meaningful CEOF coefficients?

Once the above issues have been resolved it becomes appropriate to work out
details of noise discrimination, conditioning of input data, and increase in resolution and
accuracy of the neural network output. But unless these first issues are resolved, the use
of neural networks for identification of the Guif Stream or any acoustically significant front
can not be considered feasible.

2.3 Approach

Our approach is to use a series of actual Gulf Streams produced by NORDA
between January 1986 and June 1987 to develop a neural network and test its
capabilities. These Gulf Streams are part of the Mesoscale Product’ and are defined
between longitudes 50°W and 75°W as shown in Figure 3. They are derived by human
analyst using not only IR SST imagery but also GEOSAT altimetric profiles. There are 86
Gulif Streams represented by latitude-longitude pairs at inflection points stored in computer
files; the complete set is listed in Table 1. This set of Gulf Streams constitute our first
candidate training set.

We use the CEOF software already developed in previous work2. New CEOFs
were defined for the above data set. To illustrate these modes we plot the ten dominant
modes in Figure 4; please recognize that in order to produce a graph that is easily
interpreted, we do not plot the modes alone, but instead, plot the modes after multiplication
by complex coefficients that span the range of observed coefficients in the set, and, in the
case of modes greater than one, add the result to the mean value of mode 1. To
demonstrate feasibility we consider it sufficient to define the values of the first three mode




Table 1. List of 86 Gulf Streams Pairs at Inflection Points Stored in
Computer Files

[ FILE NO.  NAME DATE

1 MESQ002.DAT JAN 10, 1986
2 MESO003.DAT MAR 10, 1986
3 MESO004.DAT FEB 21, 1986
4 MESO005.DAT FEB 12, 1986
5 MESO0006.DAT FEB 14, 1986
6 MESOO007.DAT FEB 19, 1986
7 MESO008.DAT FEB 21, 1986
8 MESO009.DAT FEB 26, 1986
9 MESO010.DAT FEB 28, 1986
10 MESOO011.DAT MAR 5, 1986
11 MESO012.DAT MAR 7, 1986
12 MESOO013.DAT MAR 12, 1986
13 MESO014.DAT MAR 14, 1986
14 MESO015.DAT MAR 19, 1986
15 MESO016.DAT MAR 21, 1986
16 MESO017.DAT MAR 26, 1986
17 MESOO019.DAT MAR 28, 1986
18° MES0020.DAT APR 2, 1986
19 MES0021.DAT APR 4, 1986
20 MES0022.DAT APR 9, 1986
21 MESO024.DAT APR 16, 1986
22 MES0025.DAT APR 18, 1986
23 MESO026.DAT APR 23, 1986
24 MES0027.DAT APR 25, 1986
25° MESO029.DAT MAY 7, 1986
26 MESO032.DAT MAY 16, 1986
27 MESOO033.DAT MAY 21, 1986
28° MESOO034.DAT MAY 23, 1986
29 MESOO040.DAT JUN 18, 1986
30 MESO041.DAT JUN 20, 1986
31 MESO042.DAT JUN 25, 1986
32 MESOQ043.DAT JUN 27, 1986
33 MESO044.DAT JUL 2, 1986
34° MESO045.DAT JUL 9, 1986
35 MESO046.DAT JUL 11, 1986
36 MESO047.DAT JUL 16, 1986
37 MESO049.0AT JUL 30, 1986
38 MESO050.DAT AUG 1, 1986
39 MESO0051.DAT AUG 8, 1986
40* MESO052.DAT AUG 8, 1986
41 MESO053.DAT AUG 13, 1986
42 MESO055.DAT AUG 22, 1986
43 MESO0056.DAT AUG 27, 1986

FILE NO.
44

45
46
47
48
49°

72°

NAME
MESOO057 DAT
MESO058. DAT
MESO059.DAT
MESO060.DAT
MESO061.DAT
MESO062.DAT
MESO063.DAT
MESO064.DAT
MESO067.DAT
MESO068.DAT
MESO069.DAT
MESO070.DAT
MESO072.DAT
MESO074.DAT
MESO076 DAT
MESO078.DAT
MESQ079.DAT
MESO080.DAT
MESO081.DAT
MESQ0082.DAT
MESO086.DAT
MESO087.DAT
MESQ088.DAT
MESO089.DAT
MESO0091.DAT
MESO092.DAT
MESO093.DAT
MESO094.DAT
MESOQ095.DAT
MESO097.DAT
MESO098.DAT
MESO099.DAT
MESO101.DAT
MESO102 DAT
MESO103.DAT
MESO106.DAT
MESO107.DAT
MESO108.DAT
MESO109.DAT
MESO110.DAT
MESO113.DAT
MESO114.DAT
MESO115.DAT

DATE
AUG 29, 1986
SEP 3, 1986
SEP 5, 1986
SEP 10, 1985
SEP 12, 1986
NOV 24, 1986
NOV 28, 1986
DEC 3, 1986
DEC 12, 1986
DEC 17, 1986
DEC 19, 1986
DEC 23, 1986
MAY 30, 1986
JAN 9, 1987
JAN 16, 1987
JAN 30, 1987
FEB 6, 1987
FEB 11, 1987
FEB 11, 1987

EB 13, 1987
FEB 27,, 1987
MAR 4, 1987
MAR 6, 1987
MAR 11, 1987
MAR 23, 1987
MAR 25, 1987
MAR 27, 1987
APR 1, 1987
APR 3, 1986
APR 10, 1987
APR 14, 1987
APR 16, 1987
APR 24, 1987
APR 28, 1987
MAY 1, 1987
MAY 12, 1987
MAY 15, 1987
MAY 19,.1987
MAY 22, 1987
MAY 27, 1987
JUN §, 1987
JUN 9, 1387
JUN 12, 1987

*WITHELD FROM TRAINING SET FOR TESTING
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coefficients. Together these three modes account for more than 97% of the displacements
of the Gulif Stream. Higher accuracy could be attempted in Phase |l by using more modes.

As a second candidate for the training set, we obtained NORDA edge images such
as shown in Figure 2. However, there are only a few dozen views of the sea surface clear
enough to span the domain during our 18 months of Mesoscale Product Gulf Streams.
Our previous experience with neural network training led us to conclude that a
substantially larger set of images would be required for training to converge in the
presence of the noise (other SST fronts) in these images. Nevertheless, we did obtain
from NORDA six warmest-pixel composite SST images and the resulting edge images, as
well as tive nine individual SST images that contributed to the composites, and their edge
images. These are listed in Table 2. In all cases the edges were computed using the
16x16 pixel option of the edge detection software developed at NORDA by Holyer and
Peckinpaugh® because the other options produced perceptibly more fine grained noise.
Even though the edge images could not be used as a training set, we did intend to use
these images as test cases for the performance of the network.

Table 2. Images for which Edges are Available

Dates of Edges Dates of Edges

April 14-17, 198€ May 24, 1986

May 13-16, 1986 May 31, 1986

May 16, 1986 May 31-June 3, 1986
May 17, 1986 June 3, 1986

May 15-18, 1986 June 5, 1986

May 21, 1986 June 3-6, 1986

May 23, 1986 June 10, 1986

May 21-24, 1986

We agreed that a measure of how meaningful a set of CEOF coefficients generated
by a neural network is should be the correlation between the coefficients produced by the
neural network and the actual values produced by the CEOF software from the appropriate
Mesoscale Product. We would take the coefficients in a test case to be meaningful if they
are correlated with the actual values with a corielation coefficient ot 0.8 or better. For

12




cases in which there are too few pairs to compute correlation, then agreement of mode
coefficients within 20% would be considered meaningful.

We use the commercially available software package, Neuralworks, to establish
which training procedure generates a network whose output best converges to the actual
coefficients of the training set. Best, in this context, means fewest number of training steps
and the smallest discrepancies between the network output and the training set
coefficients. Our input in this case is just the 132 latitude-longitude pairs available in each
computer file for one Gulf Stream, i.e., 264 nodes. Our output is a set of six nodes--real
and complex parts of three CEOF coefficients. We also use the commercial software to
vary the number of hidden layers and the number of their nodes. Parameters of the
learning algorithm, number of nodes, and scaling of input and output values are all
modified empirically at this stage in order to achieve convergence.

This commercial software accesses only limited memory and can not handle the
vast input arrays inherent in satellite imagery. Thus our next step is to implement the best
training algorithm in a high level programming language (C) under a virtual mamory
operating system (UNIX) so that two dimensional grid values analogous to pixel values
can be used as input. The increase in the number of input ncdes requires an increase in
the number of hidden nodes. We emulate pixel type input with a 50x50 point grid, giving
2500 input nodes -- an increase by a factor of 10 over the previous case.

At this point we must train this new grid-input network, rewrite our Gulf Stream
profiles into this grid type format, and test the grid-input network for convergence. As
before, parameters of the learning algorithm number of nodes, and scaling of input and
output values are all modified empirically at this stage in order to achieve convergence.
We train this network finally with only 77 of the available 86 Gulf Streams, leaving a
randomly selected 9 as a test set.

When convergence is achieved, it is appropriate to run the fully trained network on
any of the 9 test Gulf Streams. The coefficients produced by the network are then
compared to the actual coefficients to determine whether they are well correlated.

We then planned to test the performance of the network with an IR edge image
projected onto the input grid. If the performance of the network is degraded, we would

then have to define a new training €3t made up of simulated noisy edges. Such a set
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could be constructed from Mesoscale Products with random sections of random length
missing and with random segments of noise added. The statistics of this random noise
may have to be matched carefully to the statistics of SST front noise observed in the six
composite images.

Finally, we expected to quantify the performance of the network with statistical
measures such as mean and root mean difference between network and Mesoscale
Product Gulf Streams, and significance level for the differences.

2.4 Apparatus

Neuralworks software for which we serve as a beta test site and several INTEL
80386 based microcomputers (386 PC) were used. Neuralwcrks operates under DOS but
is limited in memory, so the 50x50 latitude longitude grid had to be implemented in the
virtual memory environment of UNIX on the 386 machines. Imagery is displayed on EGA
graphic monitors and hardcopies made on a Laserwriter for which PostScript code had to
be written.

3.0 RESULTS ACHIEVED

The coefficients we can generate with the Neuralworks network are in excellent
agreement with the actual coefficients in the training set. Figure 5 shows how the actual
values of the real and imaginary parts of the first three CEOF modes vary over the 86 Guif
Streams used as the training set. Also plotted in Figure 5 are the values produced by the
trained network (which is called the 264-10-6 network for reasons soon to be evident) as
each Gulf Stream is input to it. The close agreement between the two curves for each
coefficient indicates that the network has converged. A neural network can produce
meaningful coefficients for CEOF modes. A neural network can generate a continuous
Gulf Stream.

We can quantify this agreement by computing for each coefficient a mean and a
variance over the ensemble of 86 Gulf Streams; these are listed in Table 3. Table 3 shows
that the means of the Neuralworks network typically agree with the actual mean within
3.6%. But what is more important, the 264-10-6 network also mimics the variance in Gulf
Stream coefficients -- typically hitting the variance within 11.8% also. The correlation
coefficient for the six sets of CEOF mode coefficients is typically better than 0.98.
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Figure 5.

Excellent agreement between neural network produced and actual mode
coefficients for the training set. Here the network is the 264-40-6 network
implemented in Neuralworks software. The real and complex parts of the first
three modes (plots a through f) are scaled according to Table 4 to fall
between 0 and 1 and are plotted against the sequence of Gulf Stream axes
from NORDA's Mesoscale Products between January 1986 and June 1987.
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Tabie 3. Mean 8 Variance of 86 Streams for 1st 3 Modes

Root Mean Square
Difference
Mode Actual Actual 264-10-6 264-10-6 | between Network
Coeff. Mean Variance Mean Variance & Actual
1, real .36686 .01994 .32810 .01669 .00236
1, imag. 51797 .00703 54300 .00362 .00526
2, real 62294 .02015 61439 .02122 .00041
2, imag. .52452 .00795 .53376 .00809 .00019
3, real .50531 .00785 .50749 .00761 .00009
3, imag. .49391 .00653 .50644 .00650 .00025

This good agreement is obtained with the following network parameters selected
through experiment. The learning algorithm is back propagation5; convergence is
achieved with 100,000 iterations through the training set with the learning coefficient set to
0.9 and the momentum coefficient set to 0.6. The number of hidden layers is 1; the
number of nodes on that layer is 10 (hence the network consists of 264-10-6 input-
hiddden-output nodes, respectively). The coefficients placed or retrieved at the six output
nodes must be separately scaled to range between the values of 0.2 and 0.8 in order for
the higher mode coefficients to converge closely. The scaling is presented in Table 4.

Table 4. Scaling Factors to Convert Values at Output Nodes of the Network
into CEOF Coefficients

Network
Output Multiply Node Add Node
Node Value by Value to
1 70.161 670.447
2 34.832 509,545
3 69.680 -42.504
4 35.872 -18.819
5 42.544 -21.590
6 32.653 -16.079
19
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We successfully implemented a new network in the C programming language that would
operate on input nodes arranged as a 50x50 grid. The Mercator Projection region
between 34°N and 45° N latitude and 75° W and 50°W longitude is mapped into this
50x50 grid. The nominal resolution of the grid is 50 km. The 86 Mesoscale Gulf Streams
are mapped onto this grid (Figure 6 shows a sample Gulf Stream on the grid) and used as
input to the new neural network. We call the new network the grid-input network, or the
2500-40-6 network, to distinguish it from the earlier network. This network contains 40
nodes in one hidden layer, learns using back propagation, and uses the same scaling for
the conversion between output nodes and CEOF coefficients as Table 4. These selections
were made a priori based on the experience with the earlier network; no experiments were
performed to determine whether performance would improve or degrade with different
selections. This network is trained with 77 of the 86 Gulf Streams; 9 Guif Streams selected
at random were held back for testing (as denoted in Table 1). It converged on its final form
after 150,000 passes through the training set. This convergence took about 7 days of run
time on our 20 megahertz (MHz) machine programmed in C under the UNIX operating
system.

Figure 7 shows the variation of coefficients over the training set and the good
agreement with coefficients produced by the grid-input network. Table 5 shows that the
means of the grid-input network typically agree with the actual mean within 0.7% for the
training set. Again, what is more important, the 2500-40-6 network also matches the
variance in Gulf Stream coefficients -- typically hitting the variance within 13.0% also. The
correlation coefficient for the six sets of CEOF mode coefficients is better than 0.87. This is
extremely encouraging because these good measures are achieved without optimizing
the pararmeters of the network. Of further importance is that the processing by the network
is extremely fast; it takes less than 1 second to produce three complex mode coefficients
from 50x50 gridded input.

The grid-input network does less well with data in the test set (Figure 8 and Table
6), but still achieves agreement within 6.0% for the means, though only within 68% of the
variances. The performance in matching the variance is skewed by poor performance on
just two axes because the test set is so smali. Figure 8 shows good qualitative agreement
between axis and image. Table 7 lists the correlations for all preceding cases.
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Figure 6.

Mesoscale Product Gulf Stream mapped to the 50x50 input grid.
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Figure 7. Same as Figure 5 (plots a through f) but for 2500-40-6 network implemented in
our own C language software operating on the training set. Again, excellent agreement
between network and actual coefficients.
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Table 5. Mean & Variance of 77 Streams in 2500-40-6

- Actuat Actual 2500-40-6 2500-40-6 RMS Error
Mean Variance Mean Variance
Coef. 1 Real | .37633 .01889 .37181 .02065 .00165
Imag | .51734 .00696 .51604 .00724 .00024
Coef. 2 Real | .61178 .01922 .61864 .02091 .00175
Imag | .52384 .00671 524865 .00741 .00048
Coef. 3 Real | .50207 .00707 50414 .0079i .00112
'mﬂl .49444 .00445 .49694 .00596 .00136

Table 6. Mean & Variance of 9 Test Streams

Actual Actual 2500-40-6| 2500-40-6 RMS Error
Mean Variance Mean Variance
Coeff 1 Real | .32451 .01083 .37834 .02275 .02468
Imag| .53443 .00471 52649 .00726 .00328
Coeff 2 Real | .65976 .01118 .62632 .02066 .01529
Imag| .52343 01317 .50572 .00451 .00813
Coeff 3Real | .51534 .00712 .48515 .00488 .00378
Ima: .46795 01119 .48532 .00370 .01652
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Table 7. Correlation Coefficients

Training Training Test
264-10-6 2500-40-6 2500-40-6
Coeff 1 Real .981010 .959822 .387440
imag .597494 .983241 749872
Coeff 2 Real .992103 .958424 .586563
Imag .993256 .967478 .643265
Coeff. 3 Real .994733 .926524 .782846
Imag 992514 .878790 -.100011

The trained 2500-40-6 network performs moderately well on noisy edge imagery
also. The edge image of Figure 2 is transformed to the much coarser 50x50 grid to provide
the noisy input shown in Figure 9. In spite of looking nothing like the training set of Gulf
Streams, the input does not cause the network to diverge; in fact, the network generates
quite reasonable coefficients. A graphical comparison of the resulting 3-mode Gulf Stream
is shown in Figure 10 with the actual 3-mode Stream and the edge imagery. The network
Gulf Stream is within 60 nm of the actual for most of its length and properly identifies Gulf
Stream SST edges by crossing over them. This result is encouraging; however, there are
insufficient resources in this Phase | effort to compute the statistical performance of the
network under a range of coarse grid noisy edge images.

Figure 10 also demonstrates that the neural network output is connected to the
CEOF software so as to produce a neural network derived Gulf Stream; therefore, this
result satisfies the final objective of the Phase | research.

The modest successes achieved for a network not optimized for gridded input and
not trained for noisy edges indicate that this neural network is robust, i.e., not unstable over
a range of parameters. We expect the network to achieve better performance with further
experimentation. The fast processing (less than 1 second) of a 50x50 edge image by a
previously trained network is a great strength of the method.
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Figure 9. Edge image mapped to the 50x50 input grid.
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Figure 10.  Proximity of 3 modes from grid-input neural networks (open circles) to the 3
modes of the actual Gulf Stream.
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4.0 CONCLUSIONS AND RECOMMENDATIONS

PSI achieved all of our Phase | objectives except the statistical analysis of the
network's performance. In spite of this, the correlations obtained and qualitative
association between a 3-mode reconstructed Gulf Stream and the original IR image does
demonstrate the feasibility of the approach. We conclude that neural networks are a viable
approach for rapidly recognizing the acoustically significant Gulf Stream in edge imagery.
We recommend that a full fledged neural network be generated that is optimized for
performing on noisy, gridded, higher resolution edge imagery and with enough complex
mode coefficients as output so that sufficient accuracy can be attained. The goal of this
work should be identification of SST edges associated with the Gulf Stream so that Guif
Stream reconstructions under SST gradients could be accurate within 10 km and
elsewhere within 50 km. The interfaces should also be designed for connection to an
imagery source (such as TESS) and a decision aid destination (such as NORDA
Oceanographic Expert System). Also a methodology should be designed to transport the
neural network/CEOF approach to other Fleet Operational Areas with acoustically
significant fronts observable with satellite imagery.
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